

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583

### **OUESTION BANK (DESCRIPTIVE)**

Subject with Code: Digital Logic Design (20CS0503) Course & Branch: B.Tech–CSE, CSM, CAD, CCC, CIC, CSIT, CAI Year &Sem: I-B.Tech& II-Sem

Regulation: R20

#### <u>UNIT –I</u> BINARY SYSTEMS & BOOLEAN ALGEBRA

| 1  | a) Convert the following:                                                                                    | [L5] [CO1]               | 6M         |
|----|--------------------------------------------------------------------------------------------------------------|--------------------------|------------|
|    | i) $(41.6875)_{10}$ to Hexadecimal number                                                                    |                          |            |
|    | ii) (11001101.0101) <sub>2</sub> to base-8 and base-4                                                        |                          |            |
|    | b) Using 2's complement, subtract $(111001)_2$ from $(101011)_2$ .                                           | [L5] [CO1]               | 6M         |
| 2  | a) Convert the following numbers:                                                                            | [L5] [CO1]               | <b>4</b> M |
|    | i) $(AB)_{16} = (2)_2$ ii) $(1234)_8 = (2)_{16}$                                                             |                          |            |
|    | b) Convert $(AB33)_{16}$ to binary and then to gray code.                                                    | [L5] [CO1]               | <b>4</b> M |
|    | c) Using BCD arithmetic, perform addition of $(7129)_{10} + (7711)_{10}$                                     | [L5] [CO1]               | 4M         |
| 3  | Convert the following:                                                                                       | [L6] [CO1]               | 12M        |
|    | a) $(1AD)_{16} = ()_{10}$                                                                                    |                          |            |
|    | b) $(453)_8 = (1)_{10}$                                                                                      |                          |            |
|    | c) $(10110011)_2 = ()_{10}$                                                                                  |                          |            |
| 4  | d) $(5436)_{10}=()_{16}$                                                                                     |                          | 1014       |
| 4  | Explain about complements with examples.                                                                     | [L2] [C01]               | 12M        |
| 5  | <ul><li>a) Explain any Binary codes with examples.</li><li>b) Describe binary stars and resistant.</li></ul> | [L2] [CO1]               | 6M         |
| 6  | b) Describe binary storage and registers.                                                                    | [L2] [CO1]               | 6M         |
| 6  | Prove the following identities:<br>(i) $A^{2} B^{2} C^{2} + A^{2} B C^{2} + A B^{2} C^{2} + A B C^{2} C^{2}$ |                          |            |
|    | (i) $A' B' C' + A' B C' + A B' C' + A B C' = C'$<br>(ii) $A B + A B C + A' B + A B' C = B + A C$             | [L5] [CO1]               | 6M         |
|    |                                                                                                              |                          |            |
| 7  | Reduce the following Boolean Expressions:<br>a) A'C'+ABC+AC'+AB to three literals.                           |                          | <b>4</b> M |
| /  | b) $(X'Y'+Z)'+Z+XY+WZ$ to three literals.                                                                    | [L6] [CO1]<br>[L6] [CO1] | 4M         |
|    | c) $A'B (D'+C'D) + B (A+A'CD)$ to one literal.                                                               |                          | 4M         |
| 8  | a) Simplify the Boolean expressions to minimum number of literals.                                           | [L6] [C01]               | 4M<br>6M   |
| 0  | i) $X' + XY + XZ' + XYZ'$                                                                                    | [L6] [CO1]               | OIVI       |
|    | i) $X + XI + XZ + XIZ$<br>ii) $(X+Y)(X+Y')$                                                                  |                          |            |
|    | b) Obtain Complement of the following Boolean Expressions:                                                   | [L5] [CO1]               | 6M         |
|    | i) $A+B+A'B'C$ ii) $AB+A(B+C)+B'(B+D)$                                                                       |                          | UIVI       |
| 9  | a) Express the Boolean function, $F=A+B'C$ in sum of min terms form.                                         |                          | 6M         |
| フ  | b) Convert $Y=A(A+B+C)$ to standard POS form.                                                                | [L1] [CO1]<br>[L6] [CO1] | 6M         |
| 10 | a) Illustrate the digital logic gates with graphical symbol, algebraic function and                          |                          | 8M         |
| 10 | truth table.                                                                                                 |                          | 0111       |
|    | b) Define positive logic AND gate and negative logic OR gate.                                                | [L1] [CO3]               | <b>4M</b>  |
|    |                                                                                                              |                          |            |

## <u>UNIT –II</u>

### **GATE LEVEL MINIMIZATION**

| 1  | a) What is Karnaugh-Map? Explain four variable Karnaugh- Map.<br>b) Simplify the given Boolean function using K-MAP and                  | [L1] [CO1] | 6M         |
|----|------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|
|    | Implement using NAND gates.<br>F(W, X,Y,Z)=XYZ+WXY+WYZ+WXZ                                                                               | [L6] [CO1] | 6M         |
| 2  | Reduce the function, $f(x,y,z,w) = \pi M(0,2,4,5,6,7,8,10,13,15)$ using K-Map and draw the AOI logic diagram.                            | [L6] [CO5] | 12M        |
|    | Simplify the Boolean expression using K-MAP and draw the AOI logic diagram. $F(A, B,C,D,E)=\sum m(0,2,4,6,9,13,21,23,25,27,29,31)$       | [L6] [CO1] | 12M        |
| 4  | Simplify the given Boolean function using K-MAP and draw the logic diagram. F (A, B, C,D) = $\pi$ M (3,5,6,7,11,13,14,15) and d(9,10,12) | [L6] [CO5] | 12M        |
| 5  | Simplify the Boolean function using K-MAP and draw the logic diagram. F (A, B,C,D) = $\sum m(1,2,3,8,9,10,11,14) + d(7,15)$              | [L6] [CO5] | 12M        |
| 6  | a) Why NAND and NOR gates are called Universal gates? and<br>Implement F=AB+CD using two level implementation.                           | [L6] [CO1] | 6M         |
|    | b) Implement the function $F = X'Y+X Y'+ Z$ using two level NAND implementation.                                                         | [L6] [CO1] | 6M         |
| 7  | Simplify the given Boolean expression using K-map and implement using NAND gates.<br>$F(A,B,C,D) = \sum m(0,2,3,8,10,11,12,14)$          | [L6] [CO6] | 12M        |
| 8  | Simplify the following expressions, and implement them with two-level NAND gate circuits:<br>a) AB' + ABD + ABD' + A'C'D' + A'BC'        | [L6] [CO5] | <b>6M</b>  |
|    | b) BD + BCD' + AB'C'D'                                                                                                                   | [L6] [CO5] | 6M         |
| 9  | a) Design the circuit using NAND gates for the given function.<br>F= ABC'+DE+AB'D'                                                       | [L6] [CO5] | 6M         |
|    | b) For the given function, design the circuit using NOR gates.<br>F= $(X+Y)$ . $(X'+Y'+Z')$                                              | [L6] [CO5] | <b>6</b> M |
| 10 | a) Implement EX-OR function with only NAND gates and AND-OR-NOT gates.                                                                   | [L6] [CO1] | 6M         |
|    | b) Explain multilevel NAND circuits with an example.                                                                                     | [L6] [CO1] | 6M         |

# <u>UNIT –III</u>

# **COMBINATIONAL LOGIC**

| 1  | <ul><li>a) Define combinational circuit and explain its analysis procedure.</li><li>b) Explain the procedure for designing a combinational circuit.</li></ul>     | [L1] [CO1]<br>[L2] [CO2] | 6M<br>6M  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|
| 2  | a) Explain about Binary Half Adder with truth table and logic diagram.                                                                                            | [L2] [CO2]               | 6M        |
|    | b) Design and draw a full adder circuit.                                                                                                                          | [L3] [CO5]               | 6M        |
| 3  | a) Design a 4-bit adder-subtractor circuit and explain its operation.                                                                                             | [L5] [CO2]               | 6M        |
|    | b) Explain about Decimal Adder with a neat diagram.                                                                                                               | [L2] [CO1]               | 6M        |
| 4  | a) Explain the working of a Carry- Look ahead adder.                                                                                                              | [L2] [CO2]               | 6M        |
|    | b) Sketch BCD adder block diagram and explain its working.                                                                                                        | [L3] [CO2]               | 6M        |
| 5  | a) Design the combinational circuit of Binary to Excess-3 code convertor.                                                                                         | [L5] [CO2]               | <b>6M</b> |
|    | b) Design and implement 2-bit by 2-bit binary multiplier.                                                                                                         | [L6] [CO2]               | 6M        |
| 6  | a) What is a Magnitude comparator?                                                                                                                                | [L1] [CO1]               | 4M        |
|    | b) Design and implement a 2-bit Magnitude comparator.                                                                                                             | [L3] [CO3]               | <b>8M</b> |
| 7  | a) What is a Decoder? List its advantages.                                                                                                                        | [L1] [CO1]               | 6M        |
|    | b) Implement Full Adder using a Decoder and an OR gate.                                                                                                           | [L5] [CO5]               | 6M        |
| 8  | a) What is encoder? Design octal to binary encoder.                                                                                                               | [L3] [CO5]               | 6M        |
|    | b) Explain in detail about Priority Encoder.                                                                                                                      | [L2] [CO4]               | 6M        |
| 9  | a) Design and implement the following Boolean function by 8:1<br>Multiplexer.<br>$(A,B,C.D)=\Sigma m(0,1,2,5,7,8,9,14,15).$                                       | [L3] [CO5]               | 6M        |
|    | (A,B,C,D)= $2 \text{III}(0,1,2,3,7,8,9,14,15)$ .<br>b) Implement the following Boolean function by 8:1 multiplexer.<br>F(A, B, C, D) = A'BD' + ACD + A'C' D +B'CD | [L5] [CO5]               | 6M        |
| 10 | <ul><li>a) Design and implement a full subtractor using demultiplexer.</li><li>b) Design 1:8 demultiplexer using two 1:4 demultiplexer.</li></ul>                 | [L3] [CO6]<br>[L3] [CO4] | 6M<br>6M  |

# <u>Unit – IV</u> Synchronous Sequential Logic

| 1  | <ul><li>a) Define a sequential circuit and draw its block diagram.</li><li>b) Differentiate between Combinational &amp; Sequential circuits.</li><li>c) Distinguish between latches and flipflops.</li></ul>            |                |            |                | [L1] [CO1]<br>[L4] [CO4]<br>[L2] [CO4] | 4M<br>4M<br>4M           |          |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|----------------|----------------------------------------|--------------------------|----------|
| 2  |                                                                                                                                                                                                                         |                |            |                |                                        | [L2] [CO3]               | 6M       |
|    | <ul><li>b) Explain the working principle of SK and JK hip-hops. Also give their characteristic table.</li><li>b) Explain the working principle of T and D flip-flops. Also give their characteristic table.</li></ul>   |                |            |                |                                        | [L2] [CO3]               | 6M       |
| 3  | <ul><li>a) Explain the analysis procedure of sequential circuits.</li><li>b) What is race-around condition? How race around condition is eliminated in a Master–slave J-K flip-flop?</li></ul>                          |                |            |                | [L2] [CO4]<br>[L2] [CO5]               | 4M<br>8M                 |          |
| 4  | <ul><li>a) List the advantages and disadvantages of Flipflops.</li><li>b) What is the difference between Characteristic table and Excitation table? Give the excitation tables of SR, JK, T and D Flip flops.</li></ul> |                |            |                |                                        | [L1] [CO6]<br>[L2] [CO3] | 4M<br>8M |
| 5  |                                                                                                                                                                                                                         | -              |            | plified sequer | ntial circuit for                      | [L3] [CO2]               | 12M      |
|    | PS                                                                                                                                                                                                                      | ng state table | Text State | Out            | tput                                   |                          |          |
|    | 15                                                                                                                                                                                                                      | X=0            | X=1        | X=0            | X=1                                    |                          |          |
|    | a                                                                                                                                                                                                                       | a              | b          | 0              | 0                                      |                          |          |
|    | b                                                                                                                                                                                                                       | с              | d          | 0              | 0                                      |                          |          |
|    | с                                                                                                                                                                                                                       | а              | d          | 0              | 0                                      |                          |          |
|    | d                                                                                                                                                                                                                       | e              | f          | 0              | 1                                      |                          |          |
|    | e                                                                                                                                                                                                                       | а              | f          | 0              | 1                                      |                          |          |
|    | f                                                                                                                                                                                                                       | g              | f          | 0              | 1                                      |                          |          |
|    | g                                                                                                                                                                                                                       | a              | f          | 0              | 1                                      |                          |          |
| 6  | 6 a) What are the steps involved in design of a Synchronous Sequential circuit?                                                                                                                                         |                |            |                | a Synchronous                          | [L2] [CO1]               | 5M       |
|    | b) Define a Register. Explain in detail about various Shif Registers.                                                                                                                                                   |                |            |                |                                        | [L2] [CO4]               | 7M       |
| 7  | <ul><li>a) What is a counter? List the applications of counters.</li><li>b) Explain in detail about 3-bit ripple Up-counter using suitable diagram.</li></ul>                                                           |                |            |                | [L1] [CO6]<br>[L2] [CO1]               | 4M<br>8M                 |          |
| 8  | a) What is a synchronous counter? Draw the Block Diagram of 2-                                                                                                                                                          |                |            |                | [L1] [CO4]                             | <b>4M</b>                |          |
|    | bit UP Counter.<br>b) Design and implement Mod-6 synchronous Counter using<br>clocked T-flipflop.                                                                                                                       |                |            |                |                                        | [L5] [CO5]               | 8M       |
| 9  | <ul><li>a) Differentiate synchronous and asynchronous counters.</li><li>b) Design a 3-bit Synchronous UP/DOWN Counter.</li></ul>                                                                                        |                |            |                | [L4] [CO4]<br>[L3] [CO5]               | 4M<br>8M                 |          |
| 10 | <ul><li>a) Explain in detail about Ring counter and list its applications.</li><li>b) Explain in detail about Johnson counter and list its applications.</li></ul>                                                      |                |            |                |                                        | [L2] [CO3]<br>[L2] [CO3] | 6M<br>6M |
|    |                                                                                                                                                                                                                         |                |            |                |                                        |                          |          |

2023

QUESTIONBANK 2023

# <u>Unit –V</u> Memory and Programmable Logic

| 1  | <ul><li>a) What is RAM? Design a 4 X 4 RAM.</li><li>b) Explain in brief about memory decoding.</li></ul>                                                                                                                                      | [L1] [CO1]<br>[L2] [CO1] | 8M<br>4M  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|
| 2  | <ul><li>a) What is an Error in digital systems? List the sources of errors.</li><li>b) Explain about Error correction &amp; Detection Codes with examples.</li></ul>                                                                          | L1] [CO4]<br>[L2] [CO1]  | 4M<br>8M  |
| 3  | <ul><li>a) Define and distinguish between PROM, PLA &amp; PAL.</li><li>b) Design and implement the following Boolean expressions using PROM.</li></ul>                                                                                        | [L4] [CO4]<br>[L5] [CO6] | 6M<br>6M  |
| 4  | F1(A, B, C) = $\Sigma$ m(0,2,4,7), F2(A,B,C)= $\Sigma$ m(1,3,5,7).<br>a) Compare RAM and ROM.<br>b) List different types of ROMs.                                                                                                             | [L2] [CO4]<br>[L1] [CO2] | 6M<br>6M  |
| 5  | <ul><li>a) What is ROM? Explain combination of PLD's.</li><li>b) Design internal logic of a 32 x 8 ROM.</li></ul>                                                                                                                             | [L1] [CO4]<br>[L6] [CO4] | 6M<br>6M  |
| 6  | <ul> <li>a) What is PLA? List its applications.</li> <li>b) Design and implement the following Boolean function using PLA.<br/>F1(A,B,C)=Σm(0,1,3,5) and F2(A,B,C)=Σm(0,3,5,7).</li> </ul>                                                    | [L1] [CO1]<br>[L6] [CO6] | 4M<br>8 M |
| 7  | Design and implement the following functions using PLA.<br>A(x,y,z)= $\sum m(1,2,4,6)$ , B(x,y,z)= $\sum m(0,1,6,7)$ , C(x,y,z)= $\sum m(2,6)$ .                                                                                              | [L6] [CO6]               | 12M       |
| 8  | <ul> <li>a) What is PAL? List its applications.</li> <li>b) Design and implement the following functions using PAL <ul> <li>i) A(w,x,y,z) = Σm(0,2,6,7,8,9,12,13)</li> <li>ii) B(w,x,y,z) ) = Σm(0,2,6,7,8,9,12,13,14)</li> </ul> </li> </ul> | [L1] [CO1]<br>[L6] [CO6] | 4M<br>8M  |
| 9  | <ul><li>a) Explain in brief about Sequential programmable logic devices.</li><li>b) Explain basic Macrocell logic.</li></ul>                                                                                                                  | [L2] [CO4]<br>[L2] [CO5] | 8M<br>4M  |
| 10 | <ul><li>a) Discuss about Complex programmable logic device.</li><li>b) What are Integrated Circuits? List its applications.</li></ul>                                                                                                         | [L2] [CO5]<br>[L1] [CO1] | 8M<br>4M  |