SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR
Siddharth Nagar, Narayanavanam Road - 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Digital Logic Design (20CS0503)
Course \& Branch: B.Tech - CSE, CSM, CAD, CCC, CIC, CSIT, CAI
Year \&Sem: I-B.Tech\& II-Sem
Regulation: R20

UNIT -I BINARY SYSTEMS \& BOOLEAN ALGEBRA

1 a) Convert the following:
[L5] [CO1]
6M
i) $(41.6875)_{10}$ to Hexadecimal number
ii) (11001101.0101) 2 to base-8 andbase-4
b) Using 2 'scomplement, subtract $(111001)_{2}$ from $(101011)_{2}$.
[L5] [CO1]
6M
2
a) Convert the following numbers:
i) $(\mathrm{AB})_{16}=(\quad)_{2}$
ii) $(1234)_{8}=()_{16}$
b) Convert (AB33 $)_{16}$ to binary and then to gray code.
[L5] [CO1] $\mathbf{4 M}$
c) Using BCD arithmetic, perform addition of (7129) $10+(7711)_{10}$

3 Convert the following:
a) $(1 \mathrm{AD})_{16}=()_{10}$
b) $(453)_{8}=()_{10}$
c) $(10110011)_{2}=()_{10}$
d) $(5436)_{10}=()_{16}$

4 Explain about complements with examples.
[L2] [CO1] $\mathbf{1 2 M}$
5 a) Explain any Binary codes with examples.
[L2] [CO1] $\mathbf{6 M}$
b) Describe binary storage and registers.

6 Prove the following identities:
(i) $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B} \mathrm{C}^{\prime}+\mathrm{AB} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC} \mathrm{C}^{\prime}=\mathrm{C}^{\prime}$
[L5] [CO1]
(ii) $\mathrm{AB}+\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{C}=\mathrm{B}+\mathrm{AC}$

Reduce the following Boolean Expressions:
7 a) $\mathrm{A}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}+\mathrm{AC}{ }^{\prime}+\mathrm{AB}$ to three literals.
[L6] [CO1] $\mathbf{4 M}$
b) $\left(\mathrm{X}^{\prime} \mathrm{Y}^{\prime}+\mathrm{Z}\right)^{\prime}+\mathrm{Z}+\mathrm{XY}+\mathrm{WZ}$ to three literals.
[L6] [CO1]
4M
c) $A^{\prime} B\left(D^{\prime}+C^{\prime} D\right)+B\left(A+A^{\prime} C D\right)$ to one literal.
[L6] [CO1] 4M
a) Simplify the Boolean expressions to minimum number of literals.
[L6] [CO1]

6M

> i) $\mathrm{X}^{\prime}+\mathrm{XY}+\mathrm{X} \mathrm{Z}^{\prime}+X Y Z^{\prime}$
> ii) $(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)$
b) Obtain Complement of the following Boolean Expressions:
[L5] [CO1] $\mathbf{6 M}$

$$
\begin{array}{ll}
\text { i) } & \mathrm{A}+\mathrm{B}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C} \\
\text { ii) } \mathrm{AB}+\mathrm{A}(\mathrm{~B}+\mathrm{C})+\mathrm{B}^{\prime}(\mathrm{B}+\mathrm{D})
\end{array}
$$

9 a) Express the Boolean function, $\mathrm{F}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}$ in sum of min terms form.
[L1] [CO1] $\quad \mathbf{6 M}$
b) Convert $\mathrm{Y}=\mathrm{A}(\mathrm{A}+\mathrm{B}+\mathrm{C})$ to standard POS form.
[L6] [CO1]
10 a) Illustrate the digital logic gates with graphical symbol, algebraic function and [L2] [CO1] 8M
b) Define positive logic AND gate and negative logic OR gate.
[L1] [CO3] 4M

UNIT -II

GATE LEVEL MINIMIZATION

1 a) What is Karnaugh-Map? Explain four variable Karnaugh- Map.
[L1] [CO1]
6M
b) Simplify the given Boolean function using K-MAP and Implement using NAND gates.
$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{XYZ}+\mathrm{WXY}+\mathrm{WYZ}+\mathrm{WXZ}$
[L6] [CO1]
2 Reduce the function, $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{w})=\pi \mathrm{M}(0,2,4,5,6,7,8,10,13,15)$ using K- [L6] [CO5] Map and draw the AOI logic diagram.

3 Simplify the Boolean expression using K-MAP and draw the AOI logic diagram. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\sum \mathrm{m}(0,2,4,6,9,13,21,23,25,27,29,31)$
4 Simplify the given Boolean function using K-MAP and draw the logic diagram. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi \mathrm{M}(3,5,6,7,11,13,14,15)$ and [L6] [CO5] d $(9,10,12)$
5 Simplify the Boolean function using K-MAP and draw the logic diagram. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,2,3,8,9,10,11,14)+\mathrm{d}(7,15)$
6 a) Why NAND and NOR gates are called Universal gates? and Implement $\mathrm{F}=\mathrm{AB}+\mathrm{CD}$ using two level implementation.
b) Implement the function $\mathrm{F}=\mathrm{X}^{\prime} \mathrm{Y}+\mathrm{X} \mathrm{Y}^{\prime}+\mathrm{Z}$ using two level NAND implementation.
[L6] [CO1]

7 Simplify the given Boolean expression using K-map and implement using NAND gates. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(0,2,3,8,10,11,12,14)$
8 Simplify the following expressions, and implement them with two-level NAND gate circuits:
[L6] [CO5]
6M
a) $\mathrm{AB}^{\prime}+\mathrm{ABD}+\mathrm{ABD}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
b) $\mathrm{BD}+\mathrm{BCD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
[L6] [CO5]
6M
9 a) Design the circuit using NAND gates for the given function.
$\mathrm{F}=\mathrm{ABC}^{\prime}+\mathrm{DE}+\mathrm{AB}^{\prime} \mathrm{D}^{\prime}$
[L6] [CO5]
6M
b) For the given function, design the circuit using NOR gates.

$$
F=(X+Y) \cdot\left(X^{\prime}+Y^{\prime}+Z^{\prime}\right)
$$

[L6] [CO5]
10 a) Implement EX-OR function with only NAND gates and AND-ORNOT gates.
b) Explain multilevel NAND circuits with an example.
[L6] [CO1]

UNIT -III

COMBINATIONAL LOGIC

1 a) Define combinational circuit and explain its analysis procedure.
[L1] [CO1]
6M
b) Explain the procedure for designing a combinational circuit.

2 a) Explain about Binary Half Adder with truth table and logic diagram.
b) Design and draw a full adder circuit.
[L 2] [CO2]
6M

3 a) Design a 4-bit adder-subtractor circuit and explain its operation.
b) Explain about Decimal Adder with a neat diagram.

4 a) Explain the working of a Carry- Look ahead adder.
b) Sketch BCD adder block diagram and explain its working.
[L2] [CO2]
6M
[L3] [CO5]
[L5] [CO2]
[L2] [CO1]
[L2] [CO2]

5 a) Design the combinational circuit of Binary to Excess-3 code
[L5] [CO2] convertor.
b) Design and implement 2-bit by 2-bit binary multiplier.
[L6] [CO2]
6 a) What is a Magnitude comparator?
[L1] [CO1]
4M
b) Design and implement a 2-bit Magnitude comparator.
[L3] [CO3]
8M
7 a) What is a Decoder? List its advantages.
[L1] [CO1]
6M
b) Implement Full Adder using a Decoder and an OR gate.

8 a) What is encoder? Design octal to binary encoder.
[L3] [CO5]
b) Explain in detail about Priority Encoder.
[L2] [CO4]
9 a) Design and implement the following Boolean function by $8: 1$ Multiplexer.
(A,B,C.D) $=\Sigma \mathrm{m}(0,1,2,5,7,8,9,14,15)$.
b) Implement the following Boolean function by $8: 1$ multiplexer.
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{BD}^{\prime}+\mathrm{ACD}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+\mathrm{B}^{\prime} \mathrm{CD}$
[L5] [CO5]
10 a) Design and implement a full subtractor using demultiplexer.
[L3] [CO6]
6M
b) Design 1:8 demultiplexer using two 1:4 demultiplexer.
[L3] [CO4]
6M

Unit - IV

Synchronous Sequential Logic

1 a) Define a sequential circuit and draw its block diagram.
b) Differentiate between Combinational \& Sequential circuits.
c) Distinguish between latches and flipflops.

2 a) Explain the working principle of SR and JK flip-flops. Also give their characteristic table.
b) Explain the working principle of T and D flip-flops. Also give their characteristic table.

3 a) Explain the analysis procedure of sequential circuits.
b) What is race-around condition? How race around condition is eliminated in a Master-slave J-K flip-flop?

4 a) List the advantages and disadvantages of Flipflops.
b) What is the difference between Characteristic table and Excitation table? Give the excitation tables of SR, JK, T and D Flip flops.

5 What is state diagram? Derive the simplified sequential circuit for the following state table.

PS	Next State		Output	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
a	a	b	0	0
b	c	d	0	0
c	a	d	0	0
d	e	f	0	1
e	a	f	0	1
f	g	f	0	1
g	a	f	0	1

6 a) What are the steps involved in design of a Synchronous Sequential circuit?
b) Define a Register. Explain in detail about various Shift [L2] [CO4] Registers.

7 a) What is a counter? List the applications of counters.
b) Explain in detail about 3-bit ripple Up-counter using suitable diagram.
a) What is a synchronous counter? Draw the Block Diagram of 2bit UP Counter.
b) Design and implement Mod-6 synchronous Counter using clocked T-flipflop.

9 a) Differentiate synchronous and asynchronous counters.
b) Design a 3-bit Synchronous UP/DOWN Counter.

10 a) Explain in detail about Ring counter and list its applications.
b) Explain in detail about Johnson counter and list its applications.
[L1] [CO1] $\mathbf{4 M}$
[L4] [CO4] $\mathbf{4 M}$
[L2] [CO4] $\mathbf{4 M}$
[L2] [CO3]
6M
[L2] [CO3]
[L2] [CO4]
4M
[L2] [CO5]
8M
[L1] [CO6]
4M
[L2] [CO3]
8M
[L3] [CO2] 12M
[L2] [CO1]
[L2] [CO1] 8M
[L1] [CO4]
[L5] [CO5]

Unit -V

Memory and Programmable Logic

1 a) What is RAM? Design a 4×4 RAM.
[L1] [CO1]
8M
b) Explain in brief about memory decoding.
[L2] [CO1]
4M
2 a) What is an Error in digital systems? List the sources of errors.
L1] [CO4]
4M
b) Explain about Error correction \& Detection Codes with examples.
[L2] [CO1]
8M
a) Define and distinguish between PROM, PLA \& PAL.
[L4] [CO4] $\mathbf{6 M}$
3 b) Design and implement the following Boolean expressions using [L5] [CO6] 6M PROM.
$\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,2,4,7), \mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(1,3,5,7)$.
4 a) Compare RAM and ROM.
b) List different types of ROMs.
[L2] [CO4] $\quad \mathbf{6 M}$
[L1] [CO2]
5 a) What is ROM? Explain combination of PLD's.
b) Design internal logic of a 32×8 ROM.

6 a) What is PLA? List its applications.
b) Design and implement the following Boolean function using PLA. $\mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,1,3,5)$ and $\mathrm{F} 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,3,5,7)$.

7 Design and implement the following functions using PLA.
[L1] [CO1] $\mathbf{4 M}$
[L6] [CO6] 8 M
[L6] [CO6] $\mathbf{1 2 M}$ $\mathrm{A}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(1,2,4,6), \mathrm{B}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,6,7), \mathrm{C}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(2,6)$.

8 a) What is PAL? List its applications.
[L1] [CO1] $\mathbf{4 M}$
b) Design and implement the following functions using PAL
i) $\mathrm{A}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13)$
ii) $\mathrm{B}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}))=\Sigma \mathrm{m}(0,2,6,7,8,9,12,13,14)$

9 a) Explain in brief about Sequential programmable logic devices.
[L2] [CO4] $\mathbf{8 M}$
b) Explain basic Macrocell logic.
[L2] [CO5] $\mathbf{4 M}$

10 a) Discuss about Complex programmable logic device.
[L2] [CO5] $\quad \mathbf{8 M}$
[L1] [CO1]
4M

